PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: UnaryHardSlopeVariable.cc 3994 2005-08-25 13:35:03Z chapados $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "UnaryHardSlopeVariable.h" 00044 #include "Var_operators.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 00052 PLEARN_IMPLEMENT_OBJECT(UnaryHardSlopeVariable, 00053 "Hard slope function whose Var input is only the argument of the function.", 00054 "Maps x (elementwise) to 0 if x<left, 1 if x>right, and linear in between otherwise."); 00055 00056 UnaryHardSlopeVariable::UnaryHardSlopeVariable() 00057 : left(0), right(0), inv_slope(0) 00058 { } 00059 00060 UnaryHardSlopeVariable::UnaryHardSlopeVariable(Variable* input,real l,real r) 00061 : inherited(input, input->length(), input->width()) , 00062 left(l), right(r), inv_slope(1.0/(r-l)) 00063 {} 00064 00065 void 00066 UnaryHardSlopeVariable::build() 00067 { 00068 inherited::build(); 00069 build_(); 00070 } 00071 00072 void 00073 UnaryHardSlopeVariable::build_() 00074 { 00075 inv_slope = (1.0 / (right - 1)); 00076 } 00077 00078 void 00079 UnaryHardSlopeVariable::declareOptions(OptionList &ol) 00080 { 00081 declareOption(ol, "left", &UnaryHardSlopeVariable::left, OptionBase::buildoption, ""); 00082 declareOption(ol, "right", &UnaryHardSlopeVariable::right, OptionBase::buildoption, ""); 00083 inherited::declareOptions(ol); 00084 } 00085 00086 void UnaryHardSlopeVariable::recomputeSize(int& l, int& w) const 00087 { 00088 if (input) { 00089 l = input->length(); 00090 w = input->width(); 00091 } else 00092 l = w = 0; 00093 } 00094 00095 00096 void UnaryHardSlopeVariable::fprop() 00097 { 00098 int l = nelems(); 00099 real* inputptr = input->valuedata; 00100 real* ptr = valuedata; 00101 for(int i=0; i<l; i++) 00102 *ptr++ = hard_slope(*inputptr++,left,right); 00103 } 00104 00105 00106 void UnaryHardSlopeVariable::bprop() 00107 { 00108 int l = nelems(); 00109 real* inputgradientptr = input->gradientdata; 00110 real* gradientptr = gradientdata; 00111 real* valueptr = valuedata; 00112 for(int i=0; i<l; i++) 00113 { 00114 real x = *valueptr++; 00115 if (x>left) 00116 if (x<right) 00117 *inputgradientptr++ += *gradientptr++ * inv_slope; 00118 } 00119 } 00120 00121 00122 } // end of namespace PLearn 00123 00124 00125 /* 00126 Local Variables: 00127 mode:c++ 00128 c-basic-offset:4 00129 c-file-style:"stroustrup" 00130 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00131 indent-tabs-mode:nil 00132 fill-column:79 00133 End: 00134 */ 00135 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :