PLearn 0.1
Public Member Functions | Friends
PLearn::Var Class Reference

#include <Variable.h>

Inheritance diagram for PLearn::Var:
Inheritance graph
[legend]
Collaboration diagram for PLearn::Var:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 Var ()
 Var.
 Var (Variable *v)
 Var (Variable *v, const char *name)
 Var (const Var &other)
 Var (const Var &other, const char *name)
 Var (const Var &other, const string &name)
 Var (int the_length, int width_=1)
 Var (int the_length, int the_width, const char *name)
 Var (int the_length, int the_width, const string &name)
 Var (int the_length, const char *name)
 Var (int the_length, const string &name)
 Var (const Vec &vec, bool vertical=true)
 Var (const Mat &mat)
int length () const
int width () const
Var subVec (int start, int len, bool transpose=false) const
Var subMat (int i, int j, int sublength, int subwidth, bool transpose=false) const
Var row (int i, bool transpose=false) const
Var column (int j, bool transpose=false) const
Var operator() (int i) const
Var operator() (int i, int j) const
Var operator[] (int i) const
 take element i of a vector
Var operator[] (Var i) const
Var operator() (Var index) const
 take row i of a matrix
Var operator() (Var i, Var j) const
 take element i,j of a matrix
void operator= (real f)
void operator= (const Vec &v)
void operator= (const Mat &m)

Friends

class RandomVariable
class RandomVar

Detailed Description

Definition at line 58 of file Variable.h.


Constructor & Destructor Documentation

PLearn::Var::Var ( )

Var.

Definition at line 69 of file Variable.cc.

Referenced by operator[](), and subVec().

:PP<Variable>(0) {}

Here is the caller graph for this function:

PLearn::Var::Var ( Variable v)

Definition at line 70 of file Variable.cc.

:PP<Variable>(v) {}
PLearn::Var::Var ( Variable v,
const char *  name 
)

Definition at line 71 of file Variable.cc.

References PLearn::PP< Variable >::ptr, and PLearn::Variable::setName().

:PP<Variable>(v) { ptr->setName(name); }

Here is the call graph for this function:

PLearn::Var::Var ( const Var other)

Definition at line 72 of file Variable.cc.

:PP<Variable>(other) {}
PLearn::Var::Var ( const Var other,
const char *  name 
)

Definition at line 73 of file Variable.cc.

References PLearn::PP< Variable >::ptr, and PLearn::Variable::setName().

:PP<Variable>(other) { ptr->setName(name); }

Here is the call graph for this function:

PLearn::Var::Var ( const Var other,
const string &  name 
)

Definition at line 74 of file Variable.cc.

References PLearn::PP< Variable >::ptr, and PLearn::Variable::setName().

: PP<Variable>(other) { ptr->setName(name); }

Here is the call graph for this function:

PLearn::Var::Var ( int  the_length,
int  width_ = 1 
) [explicit]

Definition at line 84 of file Variable.cc.

    :PP<Variable>(new SourceVariable(the_length,the_width)) {}
PLearn::Var::Var ( int  the_length,
int  the_width,
const char *  name 
)

Definition at line 87 of file Variable.cc.

References PLearn::PP< Variable >::ptr, and PLearn::Variable::setName().

    :PP<Variable>(new SourceVariable(the_length,the_width)) { ptr->setName(name); }

Here is the call graph for this function:

PLearn::Var::Var ( int  the_length,
int  the_width,
const string &  name 
)

Definition at line 90 of file Variable.cc.

References PLearn::PP< Variable >::ptr, and PLearn::Variable::setName().

    : PP<Variable>(new SourceVariable(the_length, the_width))
{ ptr->setName(name); }

Here is the call graph for this function:

PLearn::Var::Var ( int  the_length,
const char *  name 
)

Definition at line 76 of file Variable.cc.

References PLearn::PP< Variable >::ptr, and PLearn::Variable::setName().

    :PP<Variable>(new SourceVariable(the_length,1)) 
{ ptr->setName(name); }

Here is the call graph for this function:

PLearn::Var::Var ( int  the_length,
const string &  name 
)

Definition at line 80 of file Variable.cc.

References PLearn::PP< Variable >::ptr, and PLearn::Variable::setName().

    : PP<Variable>(new SourceVariable(the_length, 1))
{ ptr->setName(name); }

Here is the call graph for this function:

PLearn::Var::Var ( const Vec vec,
bool  vertical = true 
) [explicit]

Definition at line 94 of file Variable.cc.

    :PP<Variable>(new SourceVariable(v,vertical)) 
{}
PLearn::Var::Var ( const Mat mat) [explicit]

Definition at line 98 of file Variable.cc.

    :PP<Variable>(new SourceVariable(m))
{}

Member Function Documentation

Var PLearn::Var::column ( int  j,
bool  transpose = false 
) const [inline]

Definition at line 497 of file Variable.h.

References PLearn::subMat().

Referenced by PLearn::VarColumnsVariable::bprop(), PLearn::UnfoldedFuncVariable::fprop(), PLearn::MiniBatchClassificationLossVariable::fprop(), and PLearn::LogAddVariable::fprop().

{
    return subMat(0, j, length(), 1, transpose);
}

Here is the call graph for this function:

Here is the caller graph for this function:

int PLearn::Var::length ( ) const

Definition at line 105 of file Variable.cc.

Referenced by PLearn::Variable::accg(), PLearn::TransposeProductVariable::bbprop(), PLearn::TanhVariable::bbprop(), PLearn::SubMatVariable::bbprop(), PLearn::SquareVariable::bbprop(), PLearn::SigmoidVariable::bbprop(), PLearn::ProductVariable::bbprop(), PLearn::ProductTransposeVariable::bbprop(), PLearn::PlusVariable::bbprop(), PLearn::PlusScalarVariable::bbprop(), PLearn::PlusRowVariable::bbprop(), PLearn::PlusColumnVariable::bbprop(), PLearn::NegateElementsVariable::bbprop(), PLearn::MinusVariable::bbprop(), PLearn::MinusScalarVariable::bbprop(), PLearn::MinusRowVariable::bbprop(), PLearn::MinusColumnVariable::bbprop(), PLearn::DotProductVariable::bbprop(), PLearn::WeightedLogGaussian::bprop(), PLearn::VarRowsVariable::bprop(), PLearn::VarColumnsVariable::bprop(), PLearn::UnfoldedFuncVariable::bprop(), PLearn::TransposeVariable::bprop(), PLearn::SubMatTransposeVariable::bprop(), PLearn::SparseIncrementalAffineTransformVariable::bprop(), PLearn::SoftSoftMaxVariable::bprop(), PLearn::RowSumVariable::bprop(), PLearn::RowSumSquareVariable::bprop(), PLearn::ProbabilityPairsInverseVariable::bprop(), PLearn::Min2Variable::bprop(), PLearn::Max2Variable::bprop(), PLearn::MatrixSoftmaxVariable::bprop(), PLearn::MatrixSoftmaxLossVariable::bprop(), PLearn::MatrixOneHotSquaredLoss::bprop(), PLearn::ExtractVariable::bprop(), PLearn::ExtendedVariable::bprop(), PLearn::ConvolveVariable::bprop(), PLearn::ColumnSumVariable::bprop(), PLearn::UnfoldedFuncVariable::build_(), PLearn::TransposeProductVariable::build_(), PLearn::TimesVariable::build_(), PLearn::TimesColumnVariable::build_(), PLearn::SubsampleVariable::build_(), PLearn::SubMatVariable::build_(), PLearn::SubMatTransposeVariable::build_(), PLearn::SparseIncrementalAffineTransformVariable::build_(), PLearn::ScoreLayerVariable::build_(), PLearn::RightPseudoInverseVariable::build_(), PLearn::ReshapeVariable::build_(), PLearn::ProjectionErrorVariable::build_(), PLearn::ProductVariable::build_(), PLearn::PowVariableVariable::build_(), PLearn::PlusVariable::build_(), PLearn::PlusColumnVariable::build_(), PLearn::NonLocalManifoldParzen::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MinusVariable::build_(), PLearn::MinusTransposedColumnVariable::build_(), PLearn::MinusColumnVariable::build_(), PLearn::Min2Variable::build_(), PLearn::Max2Variable::build_(), PLearn::LogSoftSoftMaxVariable::build_(), PLearn::LogAddVariable::build_(), PLearn::LeftPseudoInverseVariable::build_(), PLearn::IsSmallerVariable::build_(), PLearn::IsLargerVariable::build_(), PLearn::InsertZerosVariable::build_(), PLearn::GaussianContinuumDistribution::build_(), PLearn::EqualVariable::build_(), PLearn::DotProductVariable::build_(), PLearn::DivVariable::build_(), PLearn::DiverseComponentAnalysis::build_(), PLearn::DiagonalizedFactorsProductVariable::build_(), PLearn::DeterminantVariable::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::BiasWeightAffineTransformVariable::build_(), PLearn::NNet::buildFuncs(), PLearn::DistRepNNet::buildOutputFromInput(), PLearn::DistRepNNet::buildSparseAffineTransform(), PLearn::DistRepNNet::buildSparseAffineTransformWeightPenalty(), PLearn::displayVarGraph(), PLearn::MixtureRandomVariable::EMBprop(), PLearn::NNet::fillWeights(), PLearn::LinearInductiveTransferClassifier::fillWeights(), PLearn::DistRepNNet::fillWeights(), PLearn::DeepFeatureExtractorNNet::fillWeights(), PLearn::VarElementVariable::fprop(), PLearn::UnfoldedFuncVariable::fprop(), PLearn::TransposeVariable::fprop(), PLearn::SumVarianceOfLinearTransformedBernoullis::fprop(), PLearn::SubMatTransposeVariable::fprop(), PLearn::SparseIncrementalAffineTransformVariable::fprop(), PLearn::SoftSoftMaxVariable::fprop(), PLearn::RowSumVariable::fprop(), PLearn::RowSumSquareVariable::fprop(), PLearn::ProbabilityPairsVariable::fprop(), PLearn::ProbabilityPairsInverseVariable::fprop(), PLearn::MiniBatchClassificationLossVariable::fprop(), PLearn::Min2Variable::fprop(), PLearn::Max2Variable::fprop(), PLearn::MatrixSoftmaxVariable::fprop(), PLearn::MatrixSoftmaxLossVariable::fprop(), PLearn::MatrixOneHotSquaredLoss::fprop(), PLearn::ExtractVariable::fprop(), PLearn::ExtendedVariable::fprop(), PLearn::ColumnSumVariable::fprop(), PLearn::ArgminVariable::fprop(), PLearn::ArgmaxVariable::fprop(), PLearn::AffineTransformVariable::fprop(), PLearn::NNet::getCost(), PLearn::GaussianContinuumDistribution::initializeParams(), PLearn::GaussianContinuum::initializeParams(), PLearn::ExtendedRandomVariable::invertible(), PLearn::matrixIndex(), PLearn::VarArray::maxLength(), PLearn::OldDisplayVarGraph(), PLearn::operator/(), operator[](), PLearn::VariablesTest::perform(), PLearn::UnfoldedFuncVariable::printInfo(), PLearn::VarRowsVariable::recomputeSize(), PLearn::VarColumnsVariable::recomputeSize(), PLearn::UnfoldedFuncVariable::recomputeSize(), PLearn::UnequalConstantVariable::recomputeSize(), PLearn::UnaryHardSlopeVariable::recomputeSize(), PLearn::TransposeVariable::recomputeSize(), PLearn::TimesVariable::recomputeSize(), PLearn::TimesScalarVariable::recomputeSize(), PLearn::TimesRowVariable::recomputeSize(), PLearn::TimesConstantVariable::recomputeSize(), PLearn::TimesConstantScalarVariable2::recomputeSize(), PLearn::TimesColumnVariable::recomputeSize(), PLearn::ThresholdBpropVariable::recomputeSize(), PLearn::TanhVariable::recomputeSize(), PLearn::SubsampleVariable::recomputeSize(), PLearn::SquareVariable::recomputeSize(), PLearn::SquareRootVariable::recomputeSize(), PLearn::SoftSoftMaxVariable::recomputeSize(), PLearn::SoftplusVariable::recomputeSize(), PLearn::SoftmaxVariable::recomputeSize(), PLearn::SignVariable::recomputeSize(), PLearn::SigmoidVariable::recomputeSize(), PLearn::ScoreLayerVariable::recomputeSize(), PLearn::SaltPepperNoiseVariable::recomputeSize(), PLearn::RowSumVariable::recomputeSize(), PLearn::RowSumSquareVariable::recomputeSize(), PLearn::RightPseudoInverseVariable::recomputeSize(), PLearn::ReIndexedTargetVariable::recomputeSize(), PLearn::RandomForcedValuesVariable::recomputeSize(), PLearn::ProductVariable::recomputeSize(), PLearn::ProductTransposeVariable::recomputeSize(), PLearn::ProbabilityPairsVariable::recomputeSize(), PLearn::ProbabilityPairsInverseVariable::recomputeSize(), PLearn::PowVariableVariable::recomputeSize(), PLearn::PowVariable::recomputeSize(), PLearn::PlusVariable::recomputeSize(), PLearn::PlusScalarVariable::recomputeSize(), PLearn::PlusRowVariable::recomputeSize(), PLearn::PlusConstantVariable::recomputeSize(), PLearn::PlusColumnVariable::recomputeSize(), PLearn::PLogPVariable::recomputeSize(), PLearn::PDistributionVariable::recomputeSize(), PLearn::OutputVariable::recomputeSize(), PLearn::NonDiagVariable::recomputeSize(), PLearn::NoBpropVariable::recomputeSize(), PLearn::NLLNeighborhoodWeightsVariable::recomputeSize(), PLearn::NegateElementsVariable::recomputeSize(), PLearn::MultiSampleVariable::recomputeSize(), PLearn::MultiMaxVariable::recomputeSize(), PLearn::MinusVariable::recomputeSize(), PLearn::MinusTransposedColumnVariable::recomputeSize(), PLearn::MinusScalarVariable::recomputeSize(), PLearn::MinusRowVariable::recomputeSize(), PLearn::MinusColumnVariable::recomputeSize(), PLearn::MiniBatchClassificationLossVariable::recomputeSize(), PLearn::Min2Variable::recomputeSize(), PLearn::Max2Variable::recomputeSize(), PLearn::MatrixSoftmaxVariable::recomputeSize(), PLearn::MatrixSoftmaxLossVariable::recomputeSize(), PLearn::MatrixOneHotSquaredLoss::recomputeSize(), PLearn::MatrixInverseVariable::recomputeSize(), PLearn::LogVariable::recomputeSize(), PLearn::LogSoftSoftMaxVariable::recomputeSize(), PLearn::LogSoftmaxVariable::recomputeSize(), PLearn::LogAddVariable::recomputeSize(), PLearn::LiftOutputVariable::recomputeSize(), PLearn::LeftPseudoInverseVariable::recomputeSize(), PLearn::IsSmallerVariable::recomputeSize(), PLearn::IsMissingVariable::recomputeSize(), PLearn::IsLargerVariable::recomputeSize(), PLearn::IsAboveThresholdVariable::recomputeSize(), PLearn::InvertElementsVariable::recomputeSize(), PLearn::InterValuesVariable::recomputeSize(), PLearn::InsertZerosVariable::recomputeSize(), PLearn::IdentityVariable::recomputeSize(), PLearn::ExtendedVariable::recomputeSize(), PLearn::ExpVariable::recomputeSize(), PLearn::ErfVariable::recomputeSize(), PLearn::EqualScalarVariable::recomputeSize(), PLearn::EqualConstantVariable::recomputeSize(), PLearn::DuplicateColumnVariable::recomputeSize(), PLearn::DivVariable::recomputeSize(), PLearn::DilogarithmVariable::recomputeSize(), PLearn::DiagVariable::recomputeSize(), PLearn::CutBelowThresholdVariable::recomputeSize(), PLearn::CutAboveThresholdVariable::recomputeSize(), PLearn::Cov2CorrVariable::recomputeSize(), PLearn::ConvolveVariable::recomputeSize(), PLearn::ConstrainVariable::recomputeSize(), PLearn::BernoulliSampleVariable::recomputeSize(), PLearn::AdditiveGaussianNoiseVariable::recomputeSize(), PLearn::AbsVariable::recomputeSize(), PLearn::SubMatTransposeVariable::rfprop(), PLearn::ExtendedVariable::rfprop(), PLearn::RVInstance::RVInstance(), PLearn::SubVecRandomVariable::setValueFromParentsValue(), PLearn::soft_slope_limit(), subVec(), PLearn::VarRowVariable::symbolicBprop(), PLearn::VarElementVariable::symbolicBprop(), PLearn::SubMatVariable::symbolicBprop(), PLearn::SubMatTransposeVariable::symbolicBprop(), PLearn::SoftmaxLossVariable::symbolicBprop(), PLearn::ReshapeVariable::symbolicBprop(), PLearn::OneHotSquaredLoss::symbolicBprop(), PLearn::MinVariable::symbolicBprop(), PLearn::MaxVariable::symbolicBprop(), PLearn::ExtendedVariable::symbolicBprop(), PLearn::ConcatRowsVariable::symbolicBprop(), PLearn::ColumnIndexVariable::symbolicBprop(), PLearn::transpose(), PLearn::GaussianContinuumDistribution::update_reference_set_parameters(), and PLearn::GaussianContinuum::update_reference_set_parameters().

{ return (*this)->length(); }
Var PLearn::Var::operator() ( int  i,
int  j 
) const [inline]

Definition at line 507 of file Variable.h.

References PLearn::subMat().

{
    return subMat(i, j, 1, 1);
}

Here is the call graph for this function:

Var PLearn::Var::operator() ( Var  index) const

take row i of a matrix

Definition at line 158 of file Variable.cc.

{ return new VarRowVariable(*this,index); }
Var PLearn::Var::operator() ( Var  i,
Var  j 
) const

take element i,j of a matrix

Definition at line 161 of file Variable.cc.

References width().

{ return new VarElementVariable(*this, new PlusScalarVariable(j, new TimesConstantVariable(i,(real)width()))); }

Here is the call graph for this function:

Var PLearn::Var::operator() ( int  i) const [inline]

Definition at line 502 of file Variable.h.

Referenced by operator[]().

{
    return row(i, false);
}

Here is the caller graph for this function:

void PLearn::Var::operator= ( real  f)

Definition at line 164 of file Variable.cc.

References PLearn::PP< Variable >::isNull(), and PLERROR.

{ 
    if (!isNull())
        (*this)->value.fill(f);
    else
        PLERROR("Var::operator= called on null Var");
}

Here is the call graph for this function:

void PLearn::Var::operator= ( const Vec v)

Definition at line 172 of file Variable.cc.

References PLearn::PP< Variable >::isNull(), and PLERROR.

{ 
    if (!isNull())
        (*this)->value << v;
    else
        PLERROR("Var::operator= called on null Var");
}

Here is the call graph for this function:

void PLearn::Var::operator= ( const Mat m)

Definition at line 180 of file Variable.cc.

References PLearn::PP< Variable >::isNull(), m, and PLERROR.

{ 
    if (!isNull())
        (*this)->matValue << m;
    else
        PLERROR("Var::operator= called on null Var");
}

Here is the call graph for this function:

Var PLearn::Var::operator[] ( int  i) const

take element i of a vector

Definition at line 117 of file Variable.cc.

References length(), operator()(), PLERROR, Var(), and width().

{
    if(width()==1)
        return operator()(i,0);
    else if(length()==1)
        return operator()(0,i);
    PLERROR("You shouldnt use operator[](int i) to access a matrix variable, consider using operator() instead");
    return Var();
}

Here is the call graph for this function:

Var PLearn::Var::operator[] ( Var  i) const

Definition at line 127 of file Variable.cc.

References PLearn::Variable::isVec(), PLERROR, and PLearn::PP< Variable >::ptr.

{ 
    if (!ptr->isVec())
        PLERROR("In Var::operator[](Var index) - You should not use this "
                "operator to get the row of a matrix Var, but "
                "operator()(Var index)");
    return new VarElementVariable(*this, index); 
}

Here is the call graph for this function:

Var PLearn::Var::row ( int  i,
bool  transpose = false 
) const [inline]

Definition at line 492 of file Variable.h.

References PLearn::subMat().

Referenced by PLearn::VarRowsVariable::bprop(), and PLearn::MiniBatchClassificationLossVariable::fprop().

{
    return subMat(i, 0, 1, width(), transpose);
}

Here is the call graph for this function:

Here is the caller graph for this function:

Var PLearn::Var::subMat ( int  i,
int  j,
int  sublength,
int  subwidth,
bool  transpose = false 
) const

Definition at line 139 of file Variable.cc.

Referenced by PLearn::LogAddVariable::bprop(), PLearn::LogAddVariable::fprop(), subVec(), and PLearn::LinearInductiveTransferClassifier::train().

{ 
    if(do_transpose)
        return new SubMatTransposeVariable(*this, i, j, sublength, subwidth);
    else 
        return new SubMatVariable(*this, i, j, sublength, subwidth);
}

Here is the caller graph for this function:

Var PLearn::Var::subVec ( int  start,
int  len,
bool  transpose = false 
) const

Definition at line 147 of file Variable.cc.

References length(), PLERROR, subMat(), Var(), and width().

Referenced by PLearn::MixtureRandomVariable::ElogP(), PLearn::ExtendedRandomVariable::invertible(), PLearn::JointRandomVariable::invertible(), and PLearn::MixtureRandomVariable::logP().

{
    if(width()==1)
        return subMat(start,0,len,1,transpose);
    else if(length()==1)
        return subMat(0,start,1,len,transpose);

    PLERROR("In Variable::subVec variable is not a vec (single column or single row)");
    return Var();
}

Here is the call graph for this function:

Here is the caller graph for this function:

int PLearn::Var::width ( ) const

Definition at line 111 of file Variable.cc.

Referenced by PLearn::Variable::accg(), PLearn::SubMatVariable::bbprop(), PLearn::WeightedLogGaussian::bprop(), PLearn::VarElementVariable::bprop(), PLearn::UnfoldedFuncVariable::bprop(), PLearn::TransposeVariable::bprop(), PLearn::SubMatVariable::bprop(), PLearn::SubMatTransposeVariable::bprop(), PLearn::SparseIncrementalAffineTransformVariable::bprop(), PLearn::SoftSoftMaxVariable::bprop(), PLearn::RowSumVariable::bprop(), PLearn::RowSumSquareVariable::bprop(), PLearn::ProbabilityPairsVariable::bprop(), PLearn::ProbabilityPairsInverseVariable::bprop(), PLearn::MatrixSoftmaxVariable::bprop(), PLearn::ExtendedVariable::bprop(), PLearn::ConvolveVariable::bprop(), PLearn::ColumnSumVariable::bprop(), PLearn::ColumnIndexVariable::bprop(), PLearn::UnfoldedFuncVariable::build_(), PLearn::TimesVariable::build_(), PLearn::TimesRowVariable::build_(), PLearn::SubsampleVariable::build_(), PLearn::SubMatVariable::build_(), PLearn::SubMatTransposeVariable::build_(), PLearn::SparseIncrementalAffineTransformVariable::build_(), PLearn::ScoreLayerVariable::build_(), PLearn::RightPseudoInverseVariable::build_(), PLearn::ReshapeVariable::build_(), PLearn::ProjectionErrorVariable::build_(), PLearn::ProductVariable::build_(), PLearn::ProductTransposeVariable::build_(), PLearn::PowVariableVariable::build_(), PLearn::PlusVariable::build_(), PLearn::PlusRowVariable::build_(), PLearn::NonLocalManifoldParzen::build_(), PLearn::NLLNeighborhoodWeightsVariable::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiSampleVariable::build_(), PLearn::MultiMaxVariable::build_(), PLearn::MinusVariable::build_(), PLearn::MinusTransposedColumnVariable::build_(), PLearn::MinusRowVariable::build_(), PLearn::Min2Variable::build_(), PLearn::Max2Variable::build_(), PLearn::LogSoftSoftMaxVariable::build_(), PLearn::LogAddVariable::build_(), PLearn::LeftPseudoInverseVariable::build_(), PLearn::IsSmallerVariable::build_(), PLearn::IsLargerVariable::build_(), PLearn::EqualVariable::build_(), PLearn::DotProductVariable::build_(), PLearn::DivVariable::build_(), PLearn::DiverseComponentAnalysis::build_(), PLearn::DiagonalizedFactorsProductVariable::build_(), PLearn::DeterminantVariable::build_(), PLearn::ColumnIndexVariable::build_(), PLearn::BiasWeightAffineTransformVariable::build_(), PLearn::NNet::buildOutputFromInput(), PLearn::NNet::buildPenalties(), PLearn::displayVarGraph(), PLearn::WeightedLogGaussian::fprop(), PLearn::VarElementVariable::fprop(), PLearn::UnfoldedFuncVariable::fprop(), PLearn::TransposeVariable::fprop(), PLearn::SumVarianceOfLinearTransformedCategoricals::fprop(), PLearn::SubMatVariable::fprop(), PLearn::SubMatTransposeVariable::fprop(), PLearn::SparseIncrementalAffineTransformVariable::fprop(), PLearn::SoftSoftMaxVariable::fprop(), PLearn::RowSumVariable::fprop(), PLearn::RowSumSquareVariable::fprop(), PLearn::ProbabilityPairsVariable::fprop(), PLearn::ProbabilityPairsInverseVariable::fprop(), PLearn::MiniBatchClassificationLossVariable::fprop(), PLearn::MatrixSoftmaxVariable::fprop(), PLearn::ExtendedVariable::fprop(), PLearn::ColumnSumVariable::fprop(), PLearn::ColumnIndexVariable::fprop(), PLearn::ArgminVariable::fprop(), PLearn::ArgmaxVariable::fprop(), PLearn::NNet::getCost(), PLearn::DistRepNNet::initializeParams(), PLearn::matrixIndex(), PLearn::VarArray::maxWidth(), PLearn::OldDisplayVarGraph(), operator()(), PLearn::operator/(), PLearn::operator<<(), operator[](), PLearn::VariablesTest::perform(), PLearn::UnfoldedFuncVariable::printInfo(), PLearn::VarRowVariable::recomputeSize(), PLearn::VarRowsVariable::recomputeSize(), PLearn::UnfoldedFuncVariable::recomputeSize(), PLearn::UnequalConstantVariable::recomputeSize(), PLearn::UnaryHardSlopeVariable::recomputeSize(), PLearn::TransposeVariable::recomputeSize(), PLearn::TransposeProductVariable::recomputeSize(), PLearn::TimesVariable::recomputeSize(), PLearn::TimesScalarVariable::recomputeSize(), PLearn::TimesRowVariable::recomputeSize(), PLearn::TimesConstantVariable::recomputeSize(), PLearn::TimesConstantScalarVariable2::recomputeSize(), PLearn::TimesColumnVariable::recomputeSize(), PLearn::ThresholdBpropVariable::recomputeSize(), PLearn::TanhVariable::recomputeSize(), PLearn::SubsampleVariable::recomputeSize(), PLearn::SquareVariable::recomputeSize(), PLearn::SquareRootVariable::recomputeSize(), PLearn::SparseIncrementalAffineTransformVariable::recomputeSize(), PLearn::SoftSoftMaxVariable::recomputeSize(), PLearn::SoftplusVariable::recomputeSize(), PLearn::SoftmaxVariable::recomputeSize(), PLearn::SignVariable::recomputeSize(), PLearn::SigmoidVariable::recomputeSize(), PLearn::ScoreLayerVariable::recomputeSize(), PLearn::SaltPepperNoiseVariable::recomputeSize(), PLearn::RowAtPositionVariable::recomputeSize(), PLearn::RightPseudoInverseVariable::recomputeSize(), PLearn::ReIndexedTargetVariable::recomputeSize(), PLearn::RandomForcedValuesVariable::recomputeSize(), PLearn::ProductVariable::recomputeSize(), PLearn::ProductTransposeVariable::recomputeSize(), PLearn::ProbabilityPairsVariable::recomputeSize(), PLearn::ProbabilityPairsInverseVariable::recomputeSize(), PLearn::PowVariableVariable::recomputeSize(), PLearn::PowVariable::recomputeSize(), PLearn::PlusVariable::recomputeSize(), PLearn::PlusScalarVariable::recomputeSize(), PLearn::PlusRowVariable::recomputeSize(), PLearn::PlusConstantVariable::recomputeSize(), PLearn::PlusColumnVariable::recomputeSize(), PLearn::PLogPVariable::recomputeSize(), PLearn::PDistributionVariable::recomputeSize(), PLearn::OutputVariable::recomputeSize(), PLearn::NonDiagVariable::recomputeSize(), PLearn::NoBpropVariable::recomputeSize(), PLearn::NegateElementsVariable::recomputeSize(), PLearn::MultiSampleVariable::recomputeSize(), PLearn::MultiMaxVariable::recomputeSize(), PLearn::MinusVariable::recomputeSize(), PLearn::MinusTransposedColumnVariable::recomputeSize(), PLearn::MinusScalarVariable::recomputeSize(), PLearn::MinusRowVariable::recomputeSize(), PLearn::MinusColumnVariable::recomputeSize(), PLearn::MiniBatchClassificationLossVariable::recomputeSize(), PLearn::Min2Variable::recomputeSize(), PLearn::Max2Variable::recomputeSize(), PLearn::MatrixSoftmaxVariable::recomputeSize(), PLearn::MatrixSoftmaxLossVariable::recomputeSize(), PLearn::MatrixOneHotSquaredLoss::recomputeSize(), PLearn::MatrixInverseVariable::recomputeSize(), PLearn::LogVariable::recomputeSize(), PLearn::LogSoftSoftMaxVariable::recomputeSize(), PLearn::LogSoftmaxVariable::recomputeSize(), PLearn::LogAddVariable::recomputeSize(), PLearn::LiftOutputVariable::recomputeSize(), PLearn::LeftPseudoInverseVariable::recomputeSize(), PLearn::IsSmallerVariable::recomputeSize(), PLearn::IsMissingVariable::recomputeSize(), PLearn::IsLargerVariable::recomputeSize(), PLearn::IsAboveThresholdVariable::recomputeSize(), PLearn::InvertElementsVariable::recomputeSize(), PLearn::InsertZerosVariable::recomputeSize(), PLearn::IdentityVariable::recomputeSize(), PLearn::ExtendedVariable::recomputeSize(), PLearn::ExpVariable::recomputeSize(), PLearn::ErfVariable::recomputeSize(), PLearn::EqualScalarVariable::recomputeSize(), PLearn::EqualConstantVariable::recomputeSize(), PLearn::DuplicateRowVariable::recomputeSize(), PLearn::DivVariable::recomputeSize(), PLearn::DilogarithmVariable::recomputeSize(), PLearn::DiagVariable::recomputeSize(), PLearn::CutBelowThresholdVariable::recomputeSize(), PLearn::CutAboveThresholdVariable::recomputeSize(), PLearn::Cov2CorrVariable::recomputeSize(), PLearn::ConvolveVariable::recomputeSize(), PLearn::ConstrainVariable::recomputeSize(), PLearn::ColumnSumVariable::recomputeSize(), PLearn::ColumnIndexVariable::recomputeSize(), PLearn::BernoulliSampleVariable::recomputeSize(), PLearn::AffineTransformVariable::recomputeSize(), PLearn::AdditiveGaussianNoiseVariable::recomputeSize(), PLearn::AbsVariable::recomputeSize(), PLearn::SparseIncrementalAffineTransformVariable::reset(), PLearn::VarElementVariable::rfprop(), PLearn::SubMatVariable::rfprop(), PLearn::SubMatTransposeVariable::rfprop(), PLearn::ExtendedVariable::rfprop(), PLearn::soft_slope_limit(), subVec(), PLearn::VarElementVariable::symbolicBprop(), PLearn::SubMatVariable::symbolicBprop(), PLearn::SubMatTransposeVariable::symbolicBprop(), PLearn::ReshapeVariable::symbolicBprop(), PLearn::MinVariable::symbolicBprop(), PLearn::MaxVariable::symbolicBprop(), PLearn::ExtendedVariable::symbolicBprop(), PLearn::ConcatColumnsVariable::symbolicBprop(), PLearn::ColumnIndexVariable::symbolicBprop(), PLearn::LinearInductiveTransferClassifier::train(), PLearn::transpose(), PLearn::GaussianContinuumDistribution::update_reference_set_parameters(), and PLearn::GaussianContinuum::update_reference_set_parameters().

{ return (*this)->width(); }

Friends And Related Function Documentation

friend class RandomVar [friend]

Definition at line 61 of file Variable.h.

friend class RandomVariable [friend]

Definition at line 60 of file Variable.h.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines