PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: SumOfVariable.h 8853 2008-04-21 20:55:06Z tihocan $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #ifndef SumOfVariable_INC 00044 #define SumOfVariable_INC 00045 00046 #include "NaryVariable.h" 00047 00048 namespace PLearn { 00049 using namespace std; 00050 00051 00062 class SumOfVariable: public NaryVariable 00063 { 00064 typedef NaryVariable inherited; 00065 00066 // protected: 00067 public: 00068 VMat distr; 00069 Func f; 00070 00071 int nsamples; 00072 00073 00074 int curpos; 00075 00076 bool loop; 00077 00078 00079 00080 // To avoid allocation/deallocations in fprop/bprop 00081 Vec input_value; 00082 Vec input_gradient; 00083 Vec output_value; 00085 bool do_sizeprop; 00086 00087 int beginpos; 00088 int endpos; 00089 00090 public: 00091 00093 SumOfVariable(); 00094 00096 SumOfVariable(VMat the_distr, Func the_f, int the_nsamples=-1, 00097 bool the_do_resizeprop = false, 00098 bool call_build_ = true); 00099 00100 PLEARN_DECLARE_OBJECT(SumOfVariable); 00101 static void declareOptions(OptionList &ol); 00102 00103 virtual void build(); 00104 00105 virtual void recomputeSize(int& l, int& w) const; 00106 virtual void makeDeepCopyFromShallowCopy(CopiesMap& copies); 00107 virtual void fprop(); 00108 virtual void bprop(); 00109 virtual void fbprop(); 00110 virtual void symbolicBprop(); 00111 virtual void rfprop(); 00112 00113 VMat getDataSet() const 00114 { return distr; } 00115 00116 void setDataSet(VMat dset) 00117 { 00118 if(distr.isNotNull() && distr.length()==nsamples) 00119 nsamples = -1; 00120 00121 distr = dset; 00122 if(nsamples == -1) 00123 nsamples = distr->length(); 00124 00125 curpos = 0; 00126 } 00127 00128 void setCurrentSamplePos(int pos) 00129 { curpos = pos; } 00130 00131 int getCurrentSamplePos() const 00132 { return curpos; } 00133 00136 00145 void setSampleRange(int startpos, int n, bool do_loop) 00146 { 00147 curpos = startpos; 00148 nsamples = n; 00149 loop = do_loop; 00150 } 00151 00152 void printInfo(bool print_gradient); 00153 00154 protected: 00155 void build_(); 00156 }; 00157 00158 DECLARE_OBJECT_PTR(SumOfVariable); 00159 00161 inline Var sumOf(VMat distr, Func f, int nsamples=-1, bool the_do_sizeprop=false) 00162 { 00163 if(nsamples<0) nsamples = distr.length(); 00164 return new SumOfVariable(distr,f,nsamples,the_do_sizeprop); 00165 } 00166 00168 inline Var sumOf(Var output, const VarArray& inputs, VMat distr, int nsamples=-1, VarArray parameters=VarArray(), bool the_do_sizeprop=false) 00169 { 00170 if(nsamples<0) nsamples = distr.length(); 00171 return sumOf(distr,Func(inputs,output),nsamples,the_do_sizeprop); 00172 } 00173 00175 inline Var meanOf(VMat distr, Func f, int nsamples=-1, bool the_do_sizeprop=false) 00176 { 00177 if(nsamples<0) nsamples = distr.length(); 00178 return new SumOfVariable(distr,f/nsamples,nsamples, the_do_sizeprop); 00179 } 00180 00182 inline Var meanOf(Var output, const VarArray& inputs, VMat distr, int nsamples=-1, VarArray parameters=VarArray(), bool the_do_sizeprop=false) 00183 { 00184 if(nsamples<0) nsamples = distr.length(); 00185 return meanOf(distr, Func(inputs,output), nsamples, the_do_sizeprop); 00186 } 00187 00188 } // end of namespace PLearn 00189 00190 #endif 00191 00192 00193 /* 00194 Local Variables: 00195 mode:c++ 00196 c-basic-offset:4 00197 c-file-style:"stroustrup" 00198 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00199 indent-tabs-mode:nil 00200 fill-column:79 00201 End: 00202 */ 00203 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :